

ACN 077 110 304

QUARTERLY REPORT FOR THE PERIOD ENDED DECEMBER 31, 2007

HIGHLIGHTS

KIPOI PROJECT

- Initial JORC resource for Kipoi Central expected to be available in early February.
- Testwork confirms viability of setting up a Heavy Media Separation process at Kipoi producing 32,000 tonnes of blister Copper per annum.
- 4 Diamond and 1 RC drill rigs operating on site conducting resource and exploration drilling of highly prospective zones at Kipoi Central and Kipoi North.
- 44 diamond holes (KPCDD058 to KPCDD101) and 6 RC (KPCRC001 to KPCRC006) holes completed at Kipoi Central for a total of 5,435m and 654m respectively.
- Significant results received during the quarter include:

Kipoi Central

- KPCDD029: 133.5m @ 6.4% Cu
- KPCDD032: 67.5m @ 5.0% Cu and 0.1% Co
- KPCDD034: 109.0m @ 5.0% Cu and 1.0% Co
- KPCDD037: 11m @ 8.9% Cu and 75.8m at 5.3% Cu (0.1% Co)
- KPCDD038: 106.0m @ 6.7% Cu and 0.2% Co (including 12.6m @15.8% Cu, 0.5% Co)
- KPCDD041: 61.5m @ 5.0% Cu and 0.1% Co
- KPCDD044: 79.5m @ 6.7% Cu (including 4.5m @ 22.4% Cu)
- KPCDD049: 70.6m @ 3.4% Cu (including 5.5m @ 15.4% Cu)
- KPCDD051: 10.0m @ 4.0% Cu and 42.0m @ 1.4% Cu
- KPCDD056: 46.0m @ 3.5% Cu and 0.2% Co
- KPCDD057: 82.0m @ 4.3% Cu and 0.4% Co (including 5.5m @13.5% Cu and 1.4% Co)
- KPCDD065: 10.5m @ 3.7% Cu and 0.1% Co

Kipoi North

- KPNDD010: 24.0m @ 1.1% Cu and 0.1% Co
- KPNDD014: 15.1m @ 2.5% Cu

Kipoi West and Kipoi Central West

 $\circ\,$ Exploration and drill results indicate that mineralisation extends over a significant area.

AURUM JV

- 79 Air Core (AC) drill holes (5,121m) completed across east-west strike extensions of the Sase and Sase South Prospects on PR2214 (Lupoto Project).
- First pass AC drilling completed on high priority targets at PR1961 (Pumpi) and PR1962 (Tondo).
- Significant AC results received from first pass drilling confirm anomalous visible copper oxide mineralisation identified at Pumpi South prospect. RC drilling programme commenced at Pumpi South.
- Follow up RC and Diamond drilling planned for Sase, Kapampala and Pumpi South prospects.

Work Programme Summary

During the quarter the Company has maintained active exploration programmes over its full portfolio of projects, all located in the Katangan Copperbelt of the Democratic Republic of Congo (DRC, Figure 1).

Work on the Kipoi Project included the completion of the 50mx50m resource drilling programme at Kipoi Central, exploration drilling at Kipoi North, Kipoi North West and Central West and Kaminafitwe and continuation of testwork for establishing a mining operation at Kipoi.

Exploration work on the Aurum Joint Venture properties included further drill testing of significant Copper mineralisation discovered at the Kolwezi and Lupoto Projects and generation of a series of high priority exploration targets on the Sakania Project.

1. Kipoi Project

Project & Geological Setting

The Kipoi Project is located 75km northwest of Lubumbashi in the central part of the Katangan Copperbelt, host to multiple major copper-cobalt ore bodies including Kinsevere, Kalakundi, Tenke–Fungurume (550Mt at 3.5% Cu and 0.3% Co) and Kolwezi (760Mt @ 4.4% Cu, Figure 1).

The Kipoi Project has an area of 55 km² and contains a 12km long extensively copper-cobalt mineralised segment (ecaille) of Upper Roan (R2, R4) sediments. Work carried out to date by Tiger on the Kipoi Project includes extensive drilling on all five of the known prospects (Kileba, Judeira, Kaminafitwe, Kipoi North and Kipoi Central, Figure 2). Significant mineralisation has been intersected at all prospects and resource drilling is in progress at both Kipoi Central and Kipoi North.

Work Undertaken

Kipoi Central

Previous drill results from Kipoi Central have delineated significant copper and cobalt oxide mineralisation over a strike of 550metres and to vertical depths of more than 150 metres. Mineralisation still remains open along strike and down dip.

During the quarter, an additional 44 diamond holes were drilled for a total of 5,435m. Refer to Table 1, and Figure 3. The purpose of the drilling was to complete the 50mx50m resource drilling programme over the current known extent of the mineralisation at Kipoi Central and to reduce the drilling grid to 25mx25m over a substantial area of high grade >6% copper oxide mineralisation localised in the central part of the deposit which is expected to form the feed material for the planned start up mining operation.

Resource drilling results received during the quarter further emphasised the exceptional high grade nature of copper mineralisation at Kipoi Central as well as the substantial width of the mineralisation package. Significant results from the 50mx50m drill programme include:

- KPCDD049: 70.6m @ 3.4% Cu (including 5.5m @ 15.4% Cu)
- KPCDD051: 10.0m @ 4.0% Cu and 42.0m @ 1.4% Cu
- KPCDD056: 46.0m @ 3.5% Cu and 0.2% Co
- KPCDD057: 82.0m @ 4.3% Cu and 0.4% Co (including 5.5m @13.5% Cu and 1.4% Co)
- KPCDD065: 10.5m @ 3.7% Cu and 0.1% Co

Significant results from the 25x25m drill programme include:

- KPCDD029: 133.5m @ 6.4% Cu
- KPCDD032: 67.5m @ 5.0% Cu and 0.1% Co
- KPCDD034: 109.0m @ 5.0% Cu and 1.0% Co
- KPCDD037: 11m @ 8.9% Cu and 75.8m at 5.3% Cu (0.1% Co)
- KPCDD038: 106.0m @ 6.7% Cu and 0.2% Co (including 12.6m @15.8% Cu, 0.5% Co)
- KPCDD041: 61.5m @ 5.0% Cu and 0.1% Co
- KPCDD044: 79.5m @ 6.7% Cu (including 4.5m @ 22.4% Cu)

Other important results received were for holes KPCDD028, 030, 033, 040 and 045. These holes were drilled in the western part of the ore body and the results confirm that there is an important sulphide component to the mineralisation which is open at depth.

The results for holes KPCDD024, 046 and 048 indicate that mineralisation remains open along strike to the south.

All results are presented in Table 1, and Figure 3.

Overall the results continue to confirm the validity of the geological model for the deposit and the continuity of high grade mineralisation both along strike and at depth. The bulk of the mineralisation being intercepted occurs as broad zones of malachite (a supergene copper oxide mineral) which is best developed adjacent to fractured and brecciated siltstone and dolomite units.

Future work at Kipoi Central includes finalisation of the 25mx25m infill and a geotechnical investigation of the proposed open pit walls comprising nine boreholes that will be completed by the end of March 2008.

Resource Evaluation at Kipoi Central

The independent geology group, Cube Consulting Pty Ltd is finalising work on the geological wire frame model that will be used as the basis of the initial JORC resource estimate, which is expected to be available in early February. The resource will be based on geological information and assay and SG (Specific Gravity) data compiled from holes KPCDD001 to KPCDD049.

Kipoi North West and Kipoi Central West

An RC exploration drill programme over the western part of Kipoi Central (Kipoi West) was undertaken with 6 holes (KPCRC110 to KPCRC115) completed for a total of 692m (Figure 3).

The drilling targeted a 1000ppm copper-in-soil anomaly that has a north-south strike extent of 800m and covers the contact between a thick package of R4 Mwasha sediments (host to mineralisation at Kipoi Central) and a unit of massive pyroclastic volcanics. Visible mineralisation was observed in almost all of the holes.

The holes drilled follow up holes KPCRC102 to KPCRC107, drilled last quarter. Results from these holes suggest that the mineralisation at Kipoi Central is a part of a much larger mineralising event that has also affected Roan sediments out cropping over 600 metres to the west of Kipoi Central.

Two diamond drill holes KPCDD064 and KPCDD066 were drilled down dip of KPCRC014 and 015 in an attempt to trace down-dip extensions of visible mineralisation intersected in the two RC holes.

KPNDD064 was abandoned at 108m and KPCDD66 intersected low to moderate grade mineralisation over four intervals between 9m and 132m down hole. The mineralised intervals ranged in thickness from 16m to 26m. The host lithology has been identified as being dolomite and silty dolomites which have been extensively brecciated.

A fault trending north-south, extends from Kipoi North West south into the western extent of Kipoi West, KPCRC106 intersected this fault zone along with volcanics and returned a best result of 16m @ 1.5% Cu, and KPCRC107 to the north at Kipoi Northwest was also drilled in proximity of the same fault and returned a best intersection of 84m @ 1% Cu (Table 2, Figure 3).

Detailed mapping programmes are planned over the multiple mineralised zones that have now been identified in a large area to the West of Kipoi Central. The objective is to better understand the controls on mineralisation as there is potential for very large tonnages of copper ore with potential to average 1% to 1.5% Cu.

Kipoi North

Results from an air core (AC) drilling program reported in the previous quarter identified visible copper mineralisation in drill chips from several holes drilled west of KPNDD006.

KPNDD006 was drilled in May 2007 as part of a 14 hole diamond drilling programme. The results from this initial programme delineated a coherent zone of mineralisation over an east- west strike of 200metres (Table 3, Figure 4).

During the quarter a 22-hole (KPNRC001 to 022 for 2128m) RC drilling was undertaken to follow up on the AC programme. Copper mineralisation was logged as being intersected in 18 of the 22 holes. Due to bad ground conditions target depths were not reached in 8 holes (KPNRC003, 008, 013, 016, 017, 018, 19 and 020). The hole that appears to give the best result is KPNRC010, where visible copper mineralisation was logged over widths of up to 29 metres. Assay results for these 22 holes are pending.

The initial results from both the AC and RC drilling programmes are considered extremely encouraging as they have extended mineralisation along strike by over 300metres to a total now of more than 500 metres and suggest that mineralisation along strike to the west could be high grade.

In the next quarter a 50mx50m resource diamond drilling programme is planned.

Kaminafitwe

The Kaminafitwe prospect is located approximately 3.5km northeast of the Kipoi Central (Figure 2). The area, as defined from historic workings, currently covers an area of about 200m by 80m at the base of northeast-trending ridge.

Previous exploration work undertaken by the Company has defined several, sub-vertical zones of copper mineralisation hosted within the sheared contacts between the mafic volcanic dykes and host dolomites.

During the reporting period two RC holes (189m) were drilled to complete a 10 hole RC programme testing for the down dip extensions to copper mineralisation exposed at surface over a strike of 350 metres. Assays results are awaited.

ALS Sample Prep Laboratory

A custom built sample preparation laboratory was commissioned on site in November to process ~250 samples per day. The lab comprises a drying oven, 2 jaw crushers and 2 LM2 pulverisers. The facility provides sample pulps, reducing transportation costs and turnaround time on assay results.

A total of 4,279 samples were submitted to the new sample preparation laboratory during the quarter, of which 4,115 samples were prepared and 4,025 samples dispatched for analysis (3,651 of samples were from Kipoi Central and 374 from Kipoi North).

Kipoi Central Feasibility Study

During the quarter work continued on a preliminary feasibility study assessing the viability of establishing a Heavy Media Separation (HMS) and Electric Arc Furnace (EAF) facility at Kipoi to process the high grade +6% Cu ore that is being defined by the 25x25m drilling programme. It is intended that the HMS plant would provide an early processing and recovery option while an

SXEW plant was being constructed. The Electric Arc Furnace will deliver a 95% copper blister metal with cobalt and silver as impurities.

Metallurgical Sampling

The first batch of Sequential Acid tests for copper extractions has demonstrated that all oxide and transitional mineralisation forms will be amenable to acid dissolution of copper. The fresh sulphide ore also showed some amenability to acid dissolution however flotation is expected to provide better yields in the fresh mineralisation. Routine sequential acid testing is now conducted on all samples with assays of copper above 0.5% Cu.

Heavy Media Separation (HMS) test work has been completed, indicating, that the recovery of copper to a 25% copper concentrate will be above 55%. Tails will be stored for later processing through the SXEW circuit.

The test work for HMS has provided confidence that the proposed initial pathway for processing will deliver a high value product at low initial capital costs. The definitive HMS test work has been used as a basis for the design criteria for the proposed HMS facility.

The test work of SXEW samples is continuing. The test work includes definitive SAG (Semiautogenous Grinding) test work, crushing solvent extraction and electro-winning. This work will be completed during the June Quarter. Preliminary indicative SXEW test work has shown the Kipoi Central mineralisation is amenable to the SXEW process and recoveries above 90% copper to LME Grade A product.

A third phase of metallurgical sampling was also completed on Kipoi Central diamond drill core. Samples (~400kg total) of the oxide-transition zone were submitted for SAG Mill and sequential leach testing. Acid leach testing of the oxide-transition zone will evaluate recovery and determine whether the material is amenable to SXEW. The SXEW potential will allow for a significantly larger volume of ore to be processed.

During the quarter the Company continued work in respect of the establishment of a potential mining operation at Kipoi. A four stage process is currently being considered.

Potential Mining Operation at Kipoi Central

Stage One

Development of a HMS facility is based on processing over two years of +6% copper ore producing +95% blister copper. Predevelopment planning is at an advanced stage with Resources expected within the March quarter and the Definitive Feasibility Study (DFS) completed during the June quarter. The HMS facility has been sized to process 800,000t of +6% copper ore with +32,000tpa blister copper production. The Detailed Costing Study indicates initial capital costs around US\$100M with operating costs of US\$0.70/lb before royalties, fees, charges and capital repayments. The Company believes that Copper production during 2009 is achievable.

Stage Two

This stage will see development of the SXEW plant at 1.0Mtpa for 35,000tpa Cu LME Grade A production. The DFS will be completed during the construction of the HMS plant. The SXEW construction period will be 24 months based on SAG mill delivery. Resource estimates are required to confirm the planned SXEW. Preliminary indicative SXEW metallurgical test work indicates the Kipoi mineralisation is amenable to SXEW processing with +90% recoveries anticipated. This stage would be funded out of the first stage revenues.

Stage Three

Will see an expansion of SXEW plant to 2.0Mtpa for 70,000tpa Cu LME Grade A production.

Stage Four

Development of the Flotation plant at between 1-2Mtpa producing a +25% concentrate for sale to smelters developed in the DRC. This work will not commence until after 2015 as current indications of available oxide feed will provide SXEW feed for +10 years.

The SXEW potential allows for a significantly larger volume of ore to be processed compared to the Stage 1 treatment process.

Sterilisation Drilling at Kipoi Central and North

Sterilisation AC drilling, comprising 53 holes for 2171m, was completed over the proposed Kipoi Central and North waste dumps, tailings and plant facilities. None of the areas returned significant visible mineralisation

2. <u>Aurum Joint Venture</u>

The Company has two farm-in agreements with Aurum sprl to earn an interest of up to 70% in a group of seven exploration permits covering a total area of 1,640 sq km. All of the permits are located within the Copper Belt and are considered highly prospective for copper, cobalt, gold, PGEs and uranium mineralisation. The location of the permits is shown in Figure 1.

The Company is currently conducting systematic exploration work over all of the permits. Programmes have included detailed aeromagnetic surveys, geological mapping, soil sampling programmes, and air-core drilling on the Lupoto (PR2214) and Kolwezi properties (PR1961, PR1962)

Due to the onset of the wet season, work on the JV tenements was scaled back from the level undertaken in the previous two quarters. During the October to December quarter, follow up aircore drilling was undertaken on PR2214 and RC drilling commenced as part of a Feasibility Study at the Pumpi South anomaly on PR1961. The study will continue into 2008.

Lupoto - Permit PR2214

During this quarter AC drilling (79 holes for 5,121m) was focused on the Sase prospect. Much of the drilling was designed to infill between previously drilled lines and to test for possible westerly and easterly extensions to known mineralisation at Sase.

Four lines were also drilled over the Sase South prospect, two either side of the line drilled previously where SASAC231 intersected 55m @ 0.78% Cu and 0.14% Co. Workings were observed at the base of a hill in the centre of the anomaly which contained visible, fault breccias hosting cobalt mineralisation. This structure is believed to be associated with a regional fault that strikes north-west and intersects the main Sase anomaly striking east-west.

The AC drilling at the Kapampala Prospect focused on the north-western anomaly with 18 holes drilled (KPAAC183 to KPAAC201) for 385m. The drilling at Kapampala was designed to establish the south-eastern extent of mineralisation encountered in earlier drilling. Results are pending.

Kolwezi - Permits PR1961 and PR1962

Previous AC drilling at Pumpi South tested a 300m long copper in soil anomaly >300ppm that coincides with a mapped unit of RSC (*Roche Cellulaire*) belonging to the R2 Mine Series subgroup. A total of 97 AC holes were drilled for 3,293m. Visible mineralisation has a strike length of 300m and horizontal width of approximately 100m comprising two main zones which most likely represent the lower and upper ore bodies hosted within the R2 Mines Series sub group.

Results have been received for the first pass AC drilling at Pumpi North and South, with best results including 2m @ 1.15% Cu in PMAC200, 9m @ 1.1% Cu PMAC228 and 8m @ 1.36% Cu in PMAC231, with all holes ending in mineralisation. A 32 hole, 3,200m RC drill programme has commenced at Pumpi South and is expected to be completed in March 2008. Seven holes have been completed to date for 730m with four holes intersecting visible mineralisation, (PMRC002, PMRC003, PMRC004 and PMRC007) with two, PMRC003 and PMRC007 ending in mineralisation (Table 4, Figure 5).

A water borehole (PMWB001) located on the north-western edge of the Pumpi South soil anomaly (at 389300E, 8826550N) was drilled to a depth of 78m. The hole was sampled to 66m, with no samples collected below 66m due to a high water/mud influx. Follow-up checking indicated that at an unspecified depth between 66m and 78m, malachite mineralisation was visible in drill chips. Follow-up RC drilling over the water bore and surrounds is planned for the first quarter of 2008.

Sakania – Permits PR2133/8, 2199 & 2508

Project and Geological Setting

The four permits PR2133, 2138, 2199 and PR2508 cover an area of 1,095 sq km and are grouped 80km southeast of the town of Sakania, close to the Zambian border (Figure 1). The permits form two blocks, permits PR2138 and PR2199 (Block 1) and to the north-east PR2508 and PR2133 (Block 2). The permits are in an area with known copper and gold occurrences and are in a similar geological setting to First Quantum Minerals Ltd's Lonshi copper deposit (7.3 Mt @ 4.91% Cu).

The two blocks lie along the contact between the intensely folded, sheared and faulted basement rocks of the Irumide belt and the overlying Katangan Super Group. The Irumide Belt contains deformed granitic and gneissic rocks with complex folding and thrusting. Targets for iron oxide, copper gold (IOCG) styles of mineralisation are a priority.

During the quarter the final interpretation and data sets for the airborne geophysics survey, (completed last quarter) were received from the Geophysical consultant. The survey gathered magnetic, radiometric and elevation data and numerous magnetic and radiometric targets have been identified.

Seven targets have been identified on Block 1 with three of these being high priority targets based on magnetic anomalies. On Block 2, 12 targets were identified, 7 of these being high priority three of which show coincident copper anomalism in soils. Two of these copper coincident targets (T7 and T8) run parallel to each other and are approximately 8kms in length and are generally less than 1km apart (Figure 6).

Future Work

The deployment of one RC rig is currently being investigated in order to fast track exploration and resource drilling on the Aurum properties. The main focus will remain on the high priority targets at Pumpi and Sase which both have potential to be developed into significant resources.

D YOUNG

Managing Director

For further information in respect of the Company's activities, please contact:

David Young	Reg Gillard
Managing Director	Chairman
Tel: (+61 8) 9240 1933	Tel: (+61 8) 9240 1933
Email:	Email:
dyoung@tigerez.com	gillardr@crcpl.com.au

Company website: www.tigerez.com

Additional Notes:

Scientific or technical information in this news release has been prepared under the supervision of Mr David Young, Managing Director of the Company and a member of the Australasian Institute of Mining and Metallurgy (AusIMM). Mr Young has sufficient experience which is relevant to the style of mineralisation under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (the JORC Code). Mr Young consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

1. Figure 1 – Simplified geological map of the Katanga Province, southern DRC, showing major copper-cobalt deposits in relation to Tiger JV tenements.

Figure 2 – Kipoi Project – position of project areas.

Figure 3 – Geological Setting of the Kipoi Central Cu-Co deposit showing location of drill hole collars.

Figure 4 — Surface expression of the Kipoi North deposit showing drill hole collars and Kipoi North workings.

Figure 6 — Showing the north-eastern portion of Block 2 with airborne magnetic and the high priority targets T6, T7 & T8 highlighted in yellow with high copper in soil areas highlighted in white. The contact between the Katangan super group and Irumide fold belt can be clearly seen bisecting the image at 45 1. degrees.

KIPOI CENTRAL DRILL INTERSECTIONS

Drill Hole	Drill Type	Easting (mE)	Northing (mN)	Dip	Az (mag)	EOH Depth (m)	From (m)	To (m)	D/hole Lgth (m)	Cu (%)	Co (%)	Core Recvy (%)
		540400	0750000	- 00		075.0	04.0				. ,	
KPCDD001		510430	8/56233	-60	90	275.3	34.0	101.4	67.4	4.6	0.2 NC	66
	םם חם	510428	0756220	-60	90	104.0	33.5	70.0	44.0 20.9	5.1	05	93
	םם חם	510404	8756236	-60	90	163.9	515	78.5	29.0 27.0	0.2	1.0	80
	00	510575	0730230	-00	30	100.9	86.6	130.5	52.0	55	03	78
	חח	510345	8756121	-60	90	197.0	67.5	170.0	102.5	7.3	NS	92
KPCDD006		510298	8756030	-60	90	215.0	66.7	83.9	17.2	1.5	NS	88
		0.0200					100.3	111.3	11.0	1.3	NS	82
							144.7	209.2	64.5	2.1	NS	68
KPCDD007	DD	510354	8756032	-60	90	150.0	69.0	146.0	77.0	2.5	NS	80
KPCDD008	DD	510400	8756042	-60	90	200.1	49.0	71.0	22.0	1.9	0.3	83
KPCDD009	DD	510264	8755927	-60	90	224.6	91.0	126.0	35.0	2.0	NS	85
KPCDD010	DD	510296	8756106	-60	90	248.8	111.0	233.0	122.0	7.3	NS	92
KPCDD011	DD	510313	8755913	-60	90	198.4	114.0	131.0	17.0	0.6	NS	98
KPCDD012	DD	510326	8756226	-60	90	200.4	141.6	170.4	28.8	1.3	0.2	24
KPCDD013	DD	510243	8756030	-60	90	295.8	154.0	211.0	57.0	5.5	0.1	93
KPCDD014	DD	510211	8755937	-60	90	197.1	43.5	62.3	18.8	0.9	NS	98
							147.4	168.1	20.7	3.4	NS	87
KPCDD015	DD	510417	8756285	-60	90	113.1	43.6	83.2	39.6	1.2	1.8	75
KPCDD016	DD	510165	8755918	-60	90	239.1	155.5	171.6	16.1	2.1	0.1	64
							192.9	219.6	26.7	1.9	0.1	56
*KPCDD017		510427	8/56233	-60	90	122.4	33.0	103.0	70.0	4.4	0.2	90
KPCDD018		510421	8/5622/	-60	267	110.2	со г	70.0	No Signifi	cant In	tersect	ion
KPCDD019	סט	509864	8755932	-60	93	176.4	63.5 150.0	150.0	8.5	0.8	NS NC	97
KBCDD020	חח	500860	8756130	-60	93	226 5	140.0	152.0	2.0	2.5		100
	00	303003	0/00100	00	00	200.0	140.0	172.0	52.0	0.5	NO	33
KPCDD021	DD	509987	8756252	-60	95	86.0			No Signifi	cant In	tersect	ion
KPCDD022		509962	8/56296	-60	95	100.0	35.5	41.0	5.5	1.9	0.1	. 95
KPCDD023		510268	8/55/96	-80	95	103.4	150.0	017.0	No Signifi			ion
		510104	0/00/90 9756100	-60	330	201.4	152.0	217.0	05.0	1.1 6 1	0.1	89
KFGDD025	00	510424	0750152	-00	330	230.0	24.0	101.0	90.0 8 0	0.1 14 5	0.1	67
	חח	510699	8757341	-60	97	339.0	93.0 94 5	101.0	0.0	14.5	0.2 NS	72
	00	510000	0/0/041	00	07	000.0	108.0	133.0	25.0	07	NS	74
							157.0	213.0	56.0	1.7	NS	93
KPCDD027	DD	509982	8755901	-60	333	153.5	74.5	98.5	24.0	0.8	NS	83
KPCDD028	DD	510136	8756024	-60	95	205.5	93.0	103.0	10.0	0.7	0.1	95
							165.0	178.0	13.0	3.7	0.1	73
KPCDD029	DD	510425	8756128	-60	267	278.2	4.5	10.0	5.5	2.0	NS	91
							17.5	151.0	133.5	6.4	0.0	88
							205.0	234.0	29.0	NS	0.4	98

Table 1 - cont

KIPOI CENTRAL DRILL INTERSECTIONS cont

Drill	Drill	Easting	Northing	Dip	Az	EOH Depth	From	То	D/hole	Cu	Со	Core
Hole	Туре	(mE)	(mN)		(mag)	(m)	(m)	(m)	Lgth (m)	(%)	(%)	Recvy (%)
KPCDD030	DD	510359	8756332	-60	98	218.2			No Signifi	cant In	tersecti	ion
KPCDD031	DD	510369	8756286	-60	96	156.7			assa	iys pen	ding	
KPCDD032	DD	510337	8756081	-60	91	210.7	91.0	98.0	7.0	2.6	NS	93
							104.2	172.0	67.8	5.0	0.1	94
KPCDD033	DD	510240	8756119	-60	93	291.6	84.1	88.0	3.9	4.6	NS	40
							173.0	206.0	33.0	1.6	0.2	59
							222.0	235.0	13.0	1.4	0.3	87
KPCDD034	DD	510289	8756073	-60	96	242.2	88.5	100.0	11.5	1.6	NS	97
							124.0	233.0	109.0	5.0	1.0	99
KPCDD035	DD	510250	8755986	-60	96	329.3	95.0	127.0	32.0	3.8	NS	90
							164.0	170.0	6.0	1.6	NS	82
		-				050.0	199.0	231.0	32.0	1.5	NS	83
KPCDD036		510201	8755986	-60	93	250.6	116.0	230.0	114.0	3.2	NS	94
KPCDD037	סט	510380	8/561/4	-60	93	147.6	33.0	44.0	11.0	8.9	NS	89
							52.0	127.8	75.8	5.3	0.1	86
		540000	0750477	00	05	includes	89.5	97.5	8.0	13.6	0.7	96
KPCDD038	סט	510333	8/561//	-60	95	200.2	79.0	185.0	106.0	6. <i>1</i>	0.2	62
		540004	0755000	~~~	00	includes	134.0	146.0	12.0	15.8	0.5	47
KPCDD039	סט	510301	8755986	-60	93	220.1	83.5	100.5	17.0	2.2	NS	99
							126.0	146.0	20.0	2.9	INS 0.1	100
	חח	510291	9756170	-60	93	259.1	1/6.0	171.0	15.1	1.5		60 76
KFCDD040	שש	510201	0/301/9	00	50	200.1	104.0	171.0	7.0	1.1	NO	70
KPCDD041	DD	510382	8756070	-60	98	140.1	43.5	46.5	3.0	2.6	0.1	59
							54.5	116.0	61.5	5.0	0.1	98
KPCDD042	DD	510237	8756073	-60	93	163.4			final as	ssays p	ending	
KPCDD043	DD	<mark>510349</mark>	8755986	-60	95	153.2	84.0	135.0	51.0	1.1	0.1	91
KPCDD044	DD	510423	8756176	-60	95	104.6	13.5	93.0	79.5	6.7	NS	81
						includes	43.5	48.0	4.5	22.4	NS	78
KPCDD045	DD	510155	8755985	-60	96	300.2	35.0	56.5	21.5	1.1	NS	90
							70.5	97.0	26.5	4.4	NS	86
							122.0	143.3	21.3	0.9	NS	81
		540400	0755004			0.17.0	199.0	228.0	29.0	3.3	NS	66
KPCDD046		510109	8/55804	-60	93	217.6	141.6	1/8.5	36.9	0.9	NS 	43
KPCDD047		510329	8756224	-60	95	137.1		07.0	final as	ssays p	ending	0.5
KPCDD048	טט	510211	8/55/98	-60	93	326.0	81.5	97.0	15.5	2.1	0.1	95
							135.0	1/0.0	35.0	1.1	0.1	66
		E10000	0750101	60	00	140.0	181.0	188.0	7.0	0.9	0.0	98
KPCDD049	טט	510388	8/56121	-60	93	140.0	51.0	121.6	/0.6	3.4	INS NC	89
KPCDD050	DD	510238	8756076	-60	90	146.1	91.5	97.0	5.5 final as	i 5.4 ssays p	ending	97

Table 1 - cont

KIPOI CENTRAL DRILL INTERSECTIONS cont

Drill	Drill	Easting	Northing	Dip	Az	EOH Depth	From	То	D/hole	Cu	Со	Core
Hole	Туре	(mE)	(mN)		(mag)	(m)	(m)	(m)	Lgth (m)	(%)	(%)	Recvy (%)
KPCDD051	DD	510198	8755863	-60	93	236.3	128.0	138.0	10.0	4.0	NS	35
							159.0	201.0	42.0	1.4	NS	98
KPCDD052	DD	510191	8756120	-60	93	232.9	168.0	183.6	15.6	0.6	0.3	46
KPCDD053	DD	510248	8755860	-60	88	166.5	61.0	84.0	23.0	2.6	NS	96
							128.5	166.5	38.0	0.8	0.0	98
KPCDD054	DD	510390	8756276	-60	90	129.6	69.6	107.0	37.4	2.7	0.8	90
KPCDD055	DD	510423	8756136	-60	203	136.5		a	ssays pendir	ig		
KPCDD056	DD	510377	8756251	-60	93	140.6	47.5	49.0	1.5	1.3	0.2	86
							85.0	131.0	46.0	3.5	0.2	79
						includes	102.0	104.0	2.0	18.1	0.3	67
KPCDD057	DD	510427	8756252	-60	92	107.5	19.5	101.5	82.0	4.3	0.4	76
						includes	66.0	71.5	<u>5.5</u>	13.5	1.4	76
KPCDD065	DD	510319	8756251	-60	90	155.5	143.5	154.0	10.5	3.7	0.1	54
	KPCDD065 DD 510319 8756251 -60 90 155.5 143.5 154.0 10.5 3.7 0.1 54 QUALIFIERS: length weighted average intersections >0.5% Cu mineralised envelope (copper rich zones) >0.2% Co mineralised envelope (cobalt rich zones) 30% Cu top cut applied NS - Not Significant N/A - Not Available RCP - Reverse Circulation Percussion drillhole DD - Diamond core drillhole 10.5 3.7 0.1 54											
	**KPCDD025 drilled down-dip to test grade continuity of mineralisation											

NB : samples with missing assays and missing intervals have been assigned a grade of zero, hence diluting the calculated interval grade.

updated intercepts are highlighted intercepts with significant destroyed samples

KIPOI WEST AND KIPOI NORTH WEST RC DRILLING INTERSECTIONS

Collar ID	Dril Type	Easting	Northing	Azi	Dip	From (m)	To (m)	Interval (m)	Cu%
KPCRC102	RC	510145.5	8756177	93	-60	32	44	12	0.45
						64	100	36	0.44
KPCRC103	RC	510097.2	8756170	93	-60	40	72	32	0.7
						84	116	32	0.8
						128	140	12	0.83
KPCRC104	RC	510043.9	8756172	93	-60	36	52	16	0.59
						60	92	32	0.43
KPCRC105	RC	509989.7	8756167	93	-60	56	68	12	0.37
KPCRC106	Rc	509952	8756165	93	-60	12	28	16	1.5
						36	106	70	0.59
KPCRC107	RC	509933.3	8756481	48	-60	24	108	84	1

All samples were collected at 1m intervals and split using a 3 tier Riffel Splitter.

* All samples were analysed by ME-ICP41 (Aquq Regia Digest) and those above 10,000ppm Cu were analysed by ME-OG62 (4 Acid Digest).

* Cut off grade for Cu is 0.3%.

KIPOI NORTH DRILL INTERSECTIONS

Drill hole	Easting	Northing	Dip	Az	From	То	D/hole Length	Cu	Co	Ag	Core
	(mE)	(mN)		(mag)	(m)	(m)	(m)	(%)	(%)	(g/t)	RCVy (%)
	510514	0757110	60	102	20 0	50 F	21 5	27	NC	26	00
KENDDUUT	510514	0/5/110	-60	103	20.0	09.0 97.0	31.5	2.7	0.1	20	00 70
	510474	8757103	-60	185	10.5	56.0	4.0	17		16	72 85
KI NDD002	510474	0/5/105	-00	105	64.0	67.0	30	2.6	0.1	15	100
	510556	8757144	-60	185	15.0	18.0	3.0	1.0	NS	5	64
	510550	0/0/144	00	100	62.5	114.0	51 5	1.0	NS	5	94
KPNDD004	510507	8757163	-60	185	52.5	62.0	9.5	42	NS	33	83
KPNDD005	510375	8757100	-60	185	13.5	16.5	3.0	2.5	0.3	3	79
	010070	0/0/100	00	100	42.0	62.0	20.0	1.4	NS	21	67
					77.0	103.0	26.0	2.3	0.1	38	69
KPNDD006	510275	8757113	-60	185		No S	ianificant Interse	ction	••••		
KPNDD008	510324	8757110	-60	183	44.5	47.0	2.5	4.6	NS	6	80
					59.0	70.0	11.0	2.9	NS	14	70
KPNDD009	510323	8757159	-60	188		No S	Significant Interse	ction			_
KPNDD010	510374	8757146	-60	180	78.5	102.5	24.0	1.1	0.1	4	N/A
					175.0	192.0	17.0	1.1	0.0	3	N/A
KPNDD014	510429	8757103	-60	186	36.6	51.7	15.1	2.5	NS	13	76
					63.5	75.8	12.3	1.2	NS	18	80
										-	
Q	UALIFIER	S:	length v	veightec	l averag	e interse	ections				
			>0.5%	Cu mine	ralised e	envelope	e (copper rich zone	s)			
			>0.2%	Co mine	ralised e	envelope	e (cobalt rich zones	5)			
30% Cu top cut applied											
	Up to 4m of internal dilution included										
			NS - No	ot Signifi	cant						
			N/A - N	ot Availa	able						

PUMPI PROSPECT AC DRILLING INTERSECTIONS

Hole_ID	Easting	Northing	Dip	Azimuth	From	To	Approx.	% Cu	% Co
	(m E)	(mn)		(11)	(m)	(m)	True Wiath		
PMAC100	381595	8834764	-60	183	52	65	13	0 211	0.01
PMAC102	381591	8834696	-60	183	20	40	20	0.2	0.011
PMAC166	390398	8825473	-60	183	24	32	8	0.211	0.082
PMAC170	390398	8825399	-60	183	4	44	40	0.492	0.428
PMAC172	390401	8825367	-60	183	8	28	20	0.232	0.055
					40	46	6	0.618	0.073
PMAC173	390398	8825345	-60	183	28	42	14	0.375	0.014
PMAC175	390397	8825309	-60	183	8	20	12	0.212	0.038
PMAC177	390397	8825273	-60	183	12	24	12	0.24	0.021
PMAC182	390492	8825285	-60	183	5	6	1	1	0.035
PMAC187	390494	8825353	-60	183	23	27	4	0.852	0.498
PMAC192	390495	8825420	-60	183	33	37	4	0.366	0.113
PMAC200	390495	8825282	-60	183	10	12	2	1.15	0.03
PMAC202	390302	8825358	-60	183	24	35	11	0.522	0.101
PMAC203	390305	8825376	-60	183	20	29	9	0.543	0.067
PMAC204	390305	8825392	-60	183	12	22	10	0.545	0.079
PMAC205	390304	8825401	-60	183	8	14	6	0.412	0.059
PMAC206	390305	8825414	-60	183	4	12	8	0.374	0.102
PMAC211	390311	8825468	-60	183	33	42	9	0.435	0.107
PMAC226	390202	8825406	-60	183	36	43	7	0.351	0.093
PMAC227	390202	8825428	-60	183	28	35	7	0.579	0.108
PMAC228	390205	8825449	-60	183	16	25	9	1.106	0.078
PMAC229	390204	8825463	-60	183	8	19	11	0.582	0.098
PMAC230	390202	8825474	-60	183	8	15	7	0.786	0.089
PMAC231	390199	8825480	-60	183	8	16	8	1.363	0.243
PMAC232	390201	8825494	-60	183	23	29	6	0.43	0.285
PMAC233	390205	8825507	-60	183	12	24	12	0.388	0.146
PMAC234	390201	8825525	-60	183	8	16	8	0.388	0.325
PMAC236	390205	8825549	-60	183	8	40	32	0.343	0.09
PMAC239	390199	8825642	-60	183	32	40	8	0.252	0.002
					56	64	8	0.429	0.009
PMAC272	377199	8834396	-60	183	36	48	12	0.213	0.005
PMAC295	378400	8834403	-60	183	44	52	8	0.25	0.004
TNAC020	360594	8836937	-60	183	32	40	8	0.226	0.006

Samples are 4m composites with 1m composites collected in areas with visible mineralisation.

* All samples were analysed by ME-ICP41 (Aquq Regia Digest) and those above 10,000ppm Cu were analysed by ME-OG62 (4 Acid Digest).

* Cut off grade for Cu and Co is 0.2%.

Appendix 5B

Rule 5.3

Mining exploration entity quarterly report

Introduced 1/7/96. Origin: Appendix 8. Amended 1/7/97, 1/7/98, 30/9/2001.

Name of entity

Tiger Resources Ltd

Current quarter

\$A'000

ABN

52 077 110 304

Quarter ended ("current quarter")

December 31, 2007

Year to date

(6 months)

Consolidated statement of cash flows

Cash flows related to operating activities

			\$A'000
1.1	Receipts from product sales and related debtors		
1.2	Payments for (a) exploration and evaluation (d) development (e) production	(5,776)	(10,251)
1.0	(d) administration	(529)	(953)
1.3 1.4	Dividends received Interest and other items of a similar nature received	182	454
1.5 1.6 1.7	Interest and other costs of finance paid Income taxes paid Other (provide details if material)		
	Net Operating Cash Flows	(6,123)	(10,750)
1.8 1.9 1.10 1.11 1.12	Cash flows related to investing activities Payment for purchases of: (a) prospects (b) equity investments (c) other fixed assets Proceeds from sale of: (a) prospects (b) equity investments (c) other fixed assets (c) other fixed assets Loans to other entities Loans repaid by other entities Other (provide details if material)	(342) (482)	(342) (487)
	Net investing cash flows	(824)	(829)
1.13	Total operating and investing cash flows (carried forward)	(6,947)	(11,579)

⁺ See chapter 19 for defined terms.

1.13	Total operating and investing cash flows (carried forward)	(6,947)	(11,579)
	Cash flows related to financing activities		
1.14	Proceeds from issues of shares, options, etc.	2	11,810
1.15	Proceeds from sale of forfeited shares		
1.16	Proceeds from borrowings		
1.17	Repayment of borrowings		
1.18	Dividends paid		
1.19	Other (provide details if material)	(3)	(123)
	Net financing cash flows	(1)	11,687
	Net increase (decrease) in cash held	(6,948)	108
1.20	Cash at beginning of quarter/year to date	12,804	5,748
1.21	Exchange rate adjustments to item 1.20		
1 22	Cash at and of quarter	5,856	5,856

Payments to directors of the entity and associates of the directors Payments to related entities of the entity and associates of the related entities

		Current quarter \$A'000
1.23	Aggregate amount of payments to the parties included in item 1.2	241
1.24	Aggregate amount of loans to the parties included in item 1.10	-

1.25 Explanation necessary for an understanding of the transactions

Directors Fees, Executive Director's Remuneration and Consulting Services

Non-cash financing and investing activities

2.1 Details of financing and investing transactions which have had a material effect on consolidated assets and liabilities but did not involve cash flows

N/A

2.2 Details of outlays made by other entities to establish or increase their share in projects in which the reporting entity has an interest

N/A

⁺ See chapter 19 for defined terms.

Financing facilities available

Add notes as necessary for an understanding of the position.

		Amount available \$A'000	Amount used \$A'000
3.1	Loan facilities	N/A	N/A
3.2	Credit standby arrangements	N/A	N/A

Estimated cash outflows for next quarter

		\$A'000		
4.1	Exploration and evaluation			
		4,000		
4.2	Development			
	Total	4,000		

Reconciliation of cash

Recor showr the rel	in the consolidated statement of cash flows) to lated items in the accounts is as follows.	Current quarter \$A'000	Previous quarter \$A'000
5.1	Cash on hand and at bank	856	1,094
5.2	Deposits at call	5,000	11,710
5.3	Bank overdraft		
5.4	Other (provide details)		
	Total: cash at end of quarter (item 1.22)	5,856	12,804

Changes in interests in mining tenements

		Tenement reference	Nature of interest (note (2))	Interest at beginning	Interest at end of
				of quarter	quarter
6.1	Interests in mining tenements relinquished, reduced or lapsed	N/A			
6.2	Interests in mining tenements acquired or increased	N/A			

⁺ See chapter 19 for defined terms.

Issued and quoted securities at end of current quarter Description includes rate of interest and any redemption or conversion rights together with prices and dates.

		Total number	Number quoted	Issue price per security (see note 3) (cents)	Amount paid up per security (see note 3) (cents)
7.1	Preference +securities (description)				
7.2	Changes during quarter (a) Increases through issues (b) Decreases through returns of capital, buy- backs, redemptions				
7.3	*Ordinary securities	175,163,065	175,163,065		
7.4	Changes during quarter (a) Increases through issues	62,500 12,200	62,500 12,200	40 45	40 45
	(b) Decreases through returns of capital, buy- backs				
7.5	+Convertible debt securities (<i>description</i>)				
7.6	Changes during quarter (a) Increases through issues (b) Decreases through securities matured, converted				

⁺ See chapter 19 for defined terms.

77	Ontions			Exercice price	Expiry date
1.1	(description and	75 945 230	75 945 230	45 cents	March 31 2008
	conversion	550,000	-	25 cents	Dec. $31,2008$
	factor)	750,000	_	30 cents	Dec 31 2008
	jucior)	750,000	-	35 cents	Dec 31 2008
		2.187.500	-	40 cents	May 31 2009
		22.400.000	-	50 cents	May 31 2009
		1.600.000	-	25 cents	Dec 31 2009
		750,000	-	30 cents	Dec 31 2009
		750,000	-	35 cents	Dec 31 2009
		4,750,000	-	75 cents	June 30 2010
		1,650,000	-	60 cents	July 13 2010
		500,000	-	30 cents	Feb 01 2012
		200,000	-	60 cents	Aug 05 2010
		100,000	-	60 cents	Oct 09 2010
		350,000	-	60 cents	Nov 12 2010
		200,000	-	60 cents	Oct 16 2010
		500,000	-	60 cents	Nov 11 2010
7.8	Issued during	200,000	-	60 cents	Aug 05 2010
	quarter	100,000	-	60 cents	Oct 09 2010
		350,000	-	60 cents	Nov 12 2010
		200,000	-	60 cents	Oct 16 2010
		500,000	-	60 cents	Nov 11 2010
7.9	Exercised during				
	quarter	12,200	12,200	45 cents	March 31 2008
		62,500	-	40 cents	May 31 2009
7.10	Expired during				
	quarter	700,000	-	60 cents	July 13 2010
7.11	Debentures				
	(totals only)				
7.12	Unsecured				
	notes (totals				
	only)			J	

⁺ See chapter 19 for defined terms.

Compliance statement

- 1 This statement has been prepared under accounting policies which comply with accounting standards as defined in the Corporations Act or other standards acceptable to ASX (see note 4).
- 2 This statement does give a true and fair view of the matters disclosed.

X Kena

(Company Secretary)

Date: 31 January 2008

Print name: Susmit SHAH

Notes

Sign here:

- 1 The quarterly report provides a basis for informing the market how the entity's activities have been financed for the past quarter and the effect on its cash position. An entity wanting to disclose additional information is encouraged to do so, in a note or notes attached to this report.
- 2 The "Nature of interest" (items 6.1 and 6.2) includes options in respect of interests in mining tenements acquired, exercised or lapsed during the reporting period. If the entity is involved in a joint venture agreement and there are conditions precedent which will change its percentage interest in a mining tenement, it should disclose the change of percentage interest and conditions precedent in the list required for items 6.1 and 6.2.
- 3 **Issued and quoted securities** The issue price and amount paid up is not required in items 7.1 and 7.3 for fully paid securities.
- 4 The definitions in, and provisions of, *AASB 1022: Accounting for Extractive Industries* and *AASB 1026: Statement of Cash Flows* apply to this report.
- 5 **Accounting Standards** ASX will accept, for example, the use of International Accounting Standards for foreign entities. If the standards used do not address a topic, the Australian standard on that topic (if any) must be complied with.

== == == == ==

⁺ See chapter 19 for defined terms.